o
A COASTAL PROCESSES MODEL BASED ON
. TIME-DOMAIN BOUSSINESQ EQUATIONS
by
o .
GE WEI
AND
®
JAMES T. KIRBY
@
o
RESEARCH REPORT NO. CACR-96-01
APRIL, 1996
@
e iy SN
_—
° CENTER FOR APPLIED COASTAL RESEARCH

Ocean Engineering Laboratory
| University of Delaware
@ Newark, Delaware 19716



SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

Form Approved
OMB NO. 0704-0188

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of informaticn is estimated to average 1 hour per res i i i iewing i i i it

! urden § 1o ¢ ponse, including the time for reviewing instructions. searching existing data sor
gathering and maintaining the dala needed, and comploling and reviswing the collection of information. Send comment regarding lh?s burden estimates or agny o?ha?asapec! S;rﬁﬁ:'
collection of information, including suggastions for reducing this burdan, to Washington Headquarters Services, Directorate for information Opaerations and Reports, 1215 Jefforson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budgel, Paperwork Aeduction Project (0704-0188), Washington, OC 20503.

1. AGENCY USE ONLY (Leave bfank) 2. REPQORT DATE 3. REPORT TYPE AND DATES COVERED
April 96

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A COASTAL PROCESSES MODEL BASED ON TIME-~DOMAIN
BOUSSINESQ EQUATIONS

DAALO3=72-6 -0/10

6. AUTHOR(S)
Ge Wei and James T. Kirby

8. PERFORMING ORGANIZATION
REPORT NUMBER

CHACr-9 -0

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

UNIVERSITY OF DELAWARE

CENTER FOR APPLIED COASTAL RESEARCH
OCEAN ENGINEERING LABORATORY
NEWARK, DE 19716

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U.S. Army Research Office
P.O. Box 12211

Research Triangle Park, NC 27709-2211 Aklo 30379 /{-ESvet

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Bsased on time-doruain Boussinesq equations, a comprehensive model is con-
structed to simulate wave shoaling, wave breaking and wave runup in coastal re-
gions. To illustrale the accuracy of various forms of Boussinesq models {or large
elfect of nonlinearity, solitary wave solulions corresponding to several height to
depth ratios are obtained numerically. Comparisons of permanent solutions are
made between IBoussinesq models and other existing closed-form expressions.
Additional energy dissipation terms are included in the Boussinesq equations to
account for the effects of wave breaking and bottom friction, which play an im-
portant role for wave transformation in surf zone and swash zone areas. Model
results model ave compared to data from a laboratory study of random wave
breaking over a constant slope (Mase and Kirby, 1992). Good agreement be-
tween numerical results and experimental data is found.

14. SUBJECT TERMS 15. NU??ER IF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

17.-SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

UL
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500

Prescribed by ANSI Std. 239-18
298-102




®
A CoASsTAL PROCESSES MODEL BASED ON
TIME-DOMAIN BOUSSINESQ EQUATIONS

®

by
®

GE WEI

AND
® JAMES T. KIRBY
[
®

RESEARCH REPORT NO. CACR-96-01
APRIL, 1996

() CENTER FOR APPLIED COASTAL RESEARCH

OCEAN ENGINEERING LABORATORY
UNIVERSITY OF DELAWARE
NEWARK, DE 19716




FORWARD

This paper was presented at the Coastal Dynamics ’95 Conference in Gdansk,
Poland, September 4-8, 1995. The final manuscript was apparently not forwarded to
the Proceedings editor for inclusion in the Proceedings volume, and so it being made
available here.

J.T. Kirby, 4/4/96




A Coastal Processes Model based on Time-Domain
Boussinesq Equations

Ge Wei! and James T. Kirby?

Abstract

Based on time-domain Boussinesq equations, a comprehensive model is con-
structed to simulate wave shoaling, wave breaking and wave runup in coastal re-
gions. To illustrate the accuracy of various forms of Boussinesq models for large
effect of nonlinearity, solitary wave solutions corresponding to several height to
depth ratios are obtained numerically. Comparisons of permanent solutions are
made between Boussinesq models and other existing closed-form expressions.
Additional energy dissipation terms are included in the Boussinesq equations to
account for the effects of wave breaking and bottom friction, which play an im-
portant role for wave transformation in surf zone and swash zone areas. Model
results model are compared to data from a laboratory study of random wave
breaking over a constant slope (Mase and Kirby, 1992). Good agreement be-
tween numerical results and experimental data is found.

Introduction

Accurate prediction of wave transformation from deep to shallow water is im-
portant to the understanding of coastal processes. As waves propagate from the
deep ocean towards coastal regions, the effect of bottom topography causes wave
height and wave shape to change accordingly. A combination of wave refraction-
diffraction, reflection and nonlinear interaction takes place. The increase of wave
height and the steepening of wave crest eventually lead to wave breaking, result-
ing in the generations of large scale turbulent motion and nearshore circulation,
as well as the movement of sediment along beaches and coastlines.

With the inclusions of lowest order effects of nonlinearity and frequency
dispersion, Boussinesq equations provide a sound and increasingly well-tested
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basis for the simulation of wave propagation in coastal regions. By using depth-
averaged velocity as a dependent variable, Peregrine (1967) derived the Boussi-
nesq equations for variable water depth. Numerical models based on Peregrine’s
equations or equivalent formulations have been shown to give predictions which
compare quite well with field data (Elgar and Guza, 1985) and laboratory data
(Goring, 1978; Liu, Yoon and Kirby, 1985; Rygg, 1988), when applied within
their range of validity.

In recent years, efforts have been made to extend the validity range of stan-
dard Boussinesq equations to intermediate-depth areas. Madsen et al. (1991)
improved the linearized model by introducing expressions in the equations which
are formally equivalent to zero within the accuracy of the model, thus obtain-
ing a rearrangement of higher-order terms in the momentum equations. Nwogu
(1993) used the velocity at a certain depth as a dependent variable and pursued
a consistent derivation of the governing equations using this non-standard de-
pendent variable. The resulting dispersion relations of Madsen et al. (1991) and
Nwogu(1993) are formally equivalent and are much closer to the exact solution
in intermediate water depths than are the standard Boussinesq equations.

By using the velocity at a certain water depth as a dependent variable
(Nwogu, 1993) and making no assumption for small nonlinearity, Wei et al.
(1995) derived fully nonlinear Boussinesq equations which further extend the
range of validity for Boussinesq models. In addition to obtaining the same dis-
persion relation in intermediate water depths as those of Madsen et al. (1991)
and Nwogu (1993), the fully nonlinear Boussinesq equations provide an improved
theory for second and third order nonlinear interactions, and can be applied to
simulate wave propagation prior to wave breaking where nonlinearity is expected
to be large. Numerical examples given by Wei et al. (1995) have shown that
the fully nonlinear Boussinesq model predict wave heights, wave shapes and
wave celerities much more accurately compared to those from weakly nonlinear
extended Boussinesq equations.

To extend Boussinesq models to surf zone and swash regions where the ef-
fects of wave breaking and bottom friction are important, additional energy
dissipation terms are included to the model equations. Observing the similarity
between broken wave propagation and hydraulic jumps, Heitner and Housner
(1970) proposed an eddy viscosity model to dissipate energy for breaking waves.
Energy loss is limited to the front face of waves where the change of wave prop-
erties exceeds a certain criteria. Zelt (1991) implemented the eddy viscosity
formula in a Lagrangian Boussinesq model to simulate solitary wave breaking
and runup. Good agreements between numerical results and experimental data

were obtained.

In this study, we are constructing a coastal processes model based on the
extended Boussinesq equations. With the improved dispersion relation in in-
termediate water depth, the model can be applied in relatively deeper water.




Energy dissipation terms similar to those used by Heitner and Housner (1970)
and by Zelt (1991) are added to the Boussinesq model to simulate wave propaga-
tion in surf zone and swash zone areas. The same high-order predictor-corrector
finite difference scheme as that in Wei et al. (1995) is used to discretize the
model equations and to obtain corresponding solutions.

The Boussinesq equations derived by Nwogu (1993) and by Wei et al. (1995)
are similar, with extra higher order nonlinear dispersive terms including in the
latter set of equations. To illustrate the importance of these terms, we apply
the two models to obtain solitary wave solutions for several cases of large non-
linearity. Results with and without high order nonlinear dispersive terms are
compared with existing closed-form solutions. To demonstrate the effect of en-
ergy dissipation terms included in the model equations, we apply to laboratory
study of random wave breaking over a slope (Mase and Kirby, 1992). Compar-
isons of numerical results and experimental data for wave heights, wave phase
and third moment wave statistics will be provided.

Model Description

The fully nonlinear Boussinesq equations of Wei et al. (1995) are derived
in a similar way as that of Nwogu (1993) by using the velocity at a certain
water depth as a dependent variable. In the derivation, however, no assumption
was made about the relative size of nonlinear effects. The resulting equations
therefore include additional high order nonlinear dispersive terms. The fully
nonlinear Boussinesq equations in dimensionless form are

1
17t+V~{(h+6n)[ua + #2(5

+ 4 (za+

22— 287 = by + (81)")) V(Y - ua)

%(h - 57;)) v(V- (hua))]} =0 (1)

Uy: + 6(Ug - Vug + V + p? {-;-z:‘;V(V “Uqt) + 2, V[V - (hua,)]}
+ 62V { (20 = 67)(ta - V) [V - (hua)] = 7 [%MV gy + V- (huo,,)]

+ % 22 = (6n)] (ua - V)(V - wa) + %[V : (hug) + 87V - uar} =0 (2)
where 7 is the surface elevation, h the water depth, ue the horizontal veloc-
ity vector at the water depth of z = z5h, V the horizontal gradient operator,
subscript ¢ the partial derivative in time, é the ratio of typical wave height to
typical water depth, p? the product square of typical wavenumber and typical
water depth. The two dimensionless parameters § and p? represent the effects of
nonlinearity and frequency dispersion, respectively. For the case of small non-
linearity where terms with order of 6u? and higher may be neglected, the above
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equations reduce to Nwogu’s extended Boussinesq equations. As will be shown
in the next section, however, it is these high order nonlinear dispersive terms
that provide accurate predictions for wave heights and wave shapes of solitary
wave solutions.

In addition to the necessary corrections for waves with strong nonlinearity,
the fully nonlinear Boussinesq equations also provide a physically correct condi-
tion for mass balance at the shoreline. As shown in the continuity equation (1),
all the mass flux terms have a common factor A+§7. It is thus clear that the inass
flux at the shoreline will go to zero when the total water depth A + 61 becomes
zero. This result is expected on physical grounds and appears in the nonlinear
shallow water equations and in Boussinesq equatious where the depth-averaged
velocity is the dependent variable. However, this condition is not automatically
satisfied by Nwogu’s or other weakly nonlinear Boussinesq model based on a
velocity other than the depth-averaged value, making the application of these
models problematic at the shoreline.

Following the approach by Heitner and Housner (1970) and by Zelt (1991),
the overall effect of wave breaking is simulated by adding the following energy
dissipation term into the right hand side of equation (2)

Fbreak = [(Vbu:c):c + (Vbu‘y)y’ (vax)z + (vay)y] (3)

where u and v are the  and y component of u,. The notation v, is the eddy
viscosity defined as

vy = —Ba*h*V - u, | (4)

where B is a coefficient related to the local property of the waves and the
corresponding critical value for wave breaking to take place. The coefficient
a is the mixing length parameter, whose value is determined empirically. In the
computation which will be shown below, we use it as a constant, i.e. a = 2.
Zelt (1991) defined the critical value of velocity gradient as u; = —0.31/g/h,
and coefficient B is given by

1 i Vew<2u
B= (%‘—;’-‘-—1) if 2ul<V-u<u; ()
0 if V-u>uj

In swash zone areas where water moves up and down along the beach face,
the effect of bottom friction is no longer small. However, exact expressions for
friction force are difficult to obtain and parameterization formula has to be used
instead. Here, we use Chevy’s formula to compute bottom friction, i.e., adding
the following expression to the right hand side of equation (2)

Uq|ug|
F, . .1 E 6
bottom C}(h + (5?]) ( )

4




where Cy is the Chevy’s dimensional coeflicient which is a function of bottom
roughness and the magnitude of velocity u,. For simplicity, a constant coeflicient
is used in the model. To overcome the difficulty of defining physical variables
in the physically dry grids in a Eulerian system, a minimum thickness of water
is maintained for those dry grids. This thin layer of water remains almost
motionless due to the balance between gravitational force and bottom friction.

A high-order numerical scheme is utilized to oblain solutions to the model
equations described above. The scheme is similar to that of Wei et al. (1995),
with the inclusion of extra energy dissipation terms in the governing equations.
Standard five-point and three-point finite difference schemes are used to dis-
cretize the first-order spatial derivative terms and other higher order terms, re-
spectively. For time-stepping, we use the fourth-order Adams-Bashforth- Moul-
ton predictor-corrector scheme. Detailed formulations can be found in Wei et
al. (1995).

Results and Comparisons

To demonstrate the importance of high order nonlinear dispersion terms in
the fully nonlinear Boussinesq equations, we apply Boussinesq models with and
without those terms to obtain solitary wave solutions for large effects of nonlin-
earity. These permanent wave solutions are then compared with other existing
solutions given by Tanaka (1986) and by Seabra-Santos et al. (1987). The ap-
proximate analytical solution of solitary waves derived by Wei and Kirby (1995)
is not valid for this case due to the assumption of small nonlinearity used in the
derivation. As far as we know, there is no closed form solutions for solitary wave
for the extended Boussinesq equations. Therefore, numerical experiments are
performed here to obtain solitary waves corresponding to Boussinesq equations.

Using the approximate expressions of Wei and Kirby (1995) as inputs, we
ran both models over a long distance with constant depth. At the beginning of
these computations, wave heights and wave shapes changed constantly, and small
oscillatory tails developed behind the main waves as they propagated forward.
After running the models for a long time, however, the changes of form became
negligible and wave shapes stabilized, indicating that a numerical permanent-
form solitary wave solution corresponding to each of the Boussinesq models was
obtained. Due to the discrepancy between initial and stabilized wave forms,
several runs of the models were required to obtain a solitary wave with desired
height.

Closed-form solutions of permanent waves corresponding to different wave
equations have been investigated in the past. Problems for wave propagation
in inviscid and impressible fluid are governed by the Laplace equation inside
the fluid and associate surface and bottom boundary conditions. By assuming
small effect of dispersion and/or nonlinearity, approximate forms of equations for
wave propagation are derived to reduce the dependence of vertical space. Shallow
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water equations, Boussinesq equations and the equations derived by Serre (1953)
all belong to approximate equations. Permanent solutions corresponding to the
original wave problem were obtained by Tanaka (1986), who used conformal
mapping to transform the curved surface elevation into a straight line. Though
numerical iteration is required to solve the closed- form expression for given wave
height, Tanaka’s solutions are the most accurate to compare with. For long waves
propagating over constant depth, Serre (1953) derived a set of equations which
include more high order nounlinear dispersion terms than standard Boussinesq
equations, but not as many as the fully nonlinear Boussinesq equations of Wei
ct al. (1995). As shown in the paper by Seabra-Santos et al. (1987), Serre’s
equations has closed-form solitary wave solutions.

Figure 1 shows the comparisons between numerical solutions of solitary waves
by extended Boussinesq models and the closed-form solutions of Tanaka (1986),
and the solutions of Serre’s equations. The results from the fully nonlinear
Boussinesq model match very well Tanaka’s solution for all three height to depth
ratios. The permanent solutions corresponding to the exiended Boussinesq equa-
tions without high order nonlinear dispersive terms and to Serre’s equations, on
the other hand, predicted either narrower or wider solitary wave shapes. The
results imply that all the high order nonlinear dispersive terms are important
for simulating the propagation of waves with strong nonlinearity. Wei et al.
(1995) applied the Boussinesq models to study solitary wave shoaling over dif-
ferent slopes and undular bore propagation over constant depth. Results of
wave height, wave shape and wave celerity from the fully nonlinear Boussinesq
models are much better than those from weakly nonlinear forms of Boussinesq
equations, especially near wave breaking regions where the effect of nonlinearity

is no long small.

By including energy dissipation terms into the extended Boussinesq equa-
tions, we could further extend the models to surf zone and swash zone areas,
where the effects of wave breaking and bottom friction are substantial. Mase
and Kirby (1992) conducted a laboratory study of random wave breaking over
an impermeable beach with constant slope. Two sets of random wave with peak
frequencies 0.75H z (test one) and 1.0Hz (test two) were generated by a piston
wavemaker. Random waves propagated over a constant depth of 47.0 cm and
then over a constant slope of 1/20. Time series of surface elevation were collected
at 12 gage locations along the slope, which will serve as a verification for the
comprehensive numerical model. The corresponding water depths for the wave
gauges are: 47 c¢m, 35 cm, 30 cm, 25 cm, 20 cm, 17.5 em, 15.0 cm, 12.5 cm,
10.0 ecm, 7.5 cm, 5.0 cm, 2.5 cm. Wave breaking was observed to start at the

water depth of 17.5 cm.
The typical kh value (k is the wavenumber corresponding to the peak fre-

quency and h the water depth) for test two is close to 2, making it impossible
to employ the standard Boussinesq model due to the dispersion errors. The



® Figure 1: Comparison of solitary wave shapes for § = 0.4,0.6,0.8. Tanaka’s
solution ( ); fully nonlinear Boussinesq model (-.-.-.); Boussinesq model
without high-order nonlinear dispersive terms (---); Closed-form solutions of
Serre’s equations (.....)




extended Boussinesq models, on the other hand, could be applied here to simu-
late wave transformation due to improved dispersion relation. In the numerical
computation, experimental data from gage 1 were used as input to the model.
Figure 2 shows the comparison for surface elevation in the shallow regions where
wave breaking becomes dominant, {for a duration of 30 seconds. Except for small
discrepancy in wave phase, the model predicts the change of wave form and the
decrease of wave height due to the eflects of wave shoaling and breaking. The
results indicate that the model is capable of simulating spectral waves whose kh
values vary over a large range.

160 T T T T T

140

120

100

nat h = 47,17.5,15,12.5,10,7.5,5,2.5 cm

time (sec)

Figure 2: Comparison of surface elevation at different water depths. Solid lines
is experimental data (Mase and Kirby, 1992). Dashed line is numerical result.
Wave breaking indicated by blips below the water surface traces.

To further compare the wave properties between the model and data, we
ran the model for the entire data set. Similar to those in Figure 2, time series
comparisons are consistently good. Wave statistics were then computed from
the resulting time series. Figure 3 shows the comparisons of wave skewness and
asymmetry for all gage locations. Except for the last gage at depth of 2.5 cm
where skewness from numerical model underpredicted the data, good agreement
were found between data and model. Since the rate of sediment transport is




closely related to the third moment of wave statistics, the model has potential

coastal engineering application for estimating sand movement along beaches and
coastlines.
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0 5 10 15 20 25 30 35 40 45 50
h (cm) '

Figure 3: Comparison of skewness (o) and asymmetry (*) at different water
depths. Solid lines is experimental data (Mase and Kirby, 1992). Dashed line is
numerical result.

Conclusion

The fully nonlinear Boussinesq equations have been shown to be capable of
predicting permanent wave solutions more accurately than the extended Boussi-
nesq and Serre’s equations, indicating that the high order nonlinear dispersion
terms in the equations are important for simulating wave transformation with
strong nonlinear interaction. By including energy dissipation terms in the model
equations, the effects of wave breaking and bottom {riction can be simulated.

- Comparison of numerical results with laboratory data for random wave break-

ing over a slope are quite good. Agreements have been found not only for wave
heights and wave shapes, but also for skewness and asymmetry. This results is
significant since sediment transport calculation depends on the third moment of
wave statistics. Future work will be to extend the model to 2-D cases and to




obtain wave-induced currents by timne averaging method.
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